论文标题
与代数统计数据丢失数据丢失的鲁棒性
Robustness against data loss with Algebraic Statistics
论文作者
论文摘要
本文描述了一种算法,在给定初始设计$ \ MATHCAL {F} _n $ size $ n $的$和带有$ P $参数的线性模型中,提供了一个序列$ \ Mathcal {f} _N \ supset \ supset \ supset \ ldots \ supset \ supset \ supset \ supset \ supset \ \ m v} \ Mathcal {f} _p $的嵌套\ emph {robust}设计。序列是通过$ \ Mathcal {f} _n $的运行中的删除获得的,直到获得$ p $ -run \ emph {atature}设计$ \ Mathcal {f} _p $。算法对实际应用的潜在影响很高。初始分数$ \ MATHCAL {F} _n $可以是任何类型的,并且输出序列可用于组织实验活动。实验可以从对应于$ \ MATHCAL {F} _p $的运行开始,然后继续添加一个接一个的运行(从$ \ Mathcal {f} _ {n-k} $到$ \ Mathcal {f} _ {n-k+1} $)直到初始设计$ \ m athcal et oft iS_这样,如果出于某些意外的原因,必须在仅完成$ n-k $运行之前就停止实验活动,则相应的$ \ Mathcal {f} _ {n-k} $具有$ k \ in \ in \ in \ {1,\ ldots,n-p \} $的$ k \的鲁棒性值很高。该算法使用电路基础,这是带有整数条目的矩阵内核的特殊表示。通过使用模拟证明了算法的有效性。
The paper describes an algorithm that, given an initial design $\mathcal{F}_n$ of size $n$ and a linear model with $p$ parameters, provides a sequence $\mathcal{F}_n \supset \ldots \supset \mathcal{F}_{n-k} \supset \ldots \supset \mathcal{F}_p$ of nested \emph{robust} designs. The sequence is obtained by the removal, one by one, of the runs of $\mathcal{F}_n$ till a $p$-run \emph{saturated} design $\mathcal{F}_p$ is obtained. The potential impact of the algorithm on real applications is high. The initial fraction $\mathcal{F}_n$ can be of any type and the output sequence can be used to organize the experimental activity. The experiments can start with the runs corresponding to $\mathcal{F}_p$ and continue adding one run after the other (from $\mathcal{F}_{n-k}$ to $\mathcal{F}_{n-k+1}$) till the initial design $\mathcal{F}_n$ is obtained. In this way, if for some unexpected reasons the experimental activity must be stopped before the end when only $n-k$ runs are completed, the corresponding $\mathcal{F}_{n-k}$ has a high value of robustness for $k \in \{1, \ldots, n-p\}$. The algorithm uses the circuit basis, a special representation of the kernel of a matrix with integer entries. The effectiveness of the algorithm is demonstrated through the use of simulations.