论文标题

用于计算分子激发能,电离电位和电子亲和力的量子自搭配方程方法

Quantum self-consistent equation-of-motion method for computing molecular excitation energies, ionization potentials, and electron affinities on a quantum computer

论文作者

Asthana, Ayush, Kumar, Ashutosh, Abraham, Vibin, Grimsley, Harper, Zhang, Yu, Cincio, Lukasz, Tretiak, Sergei, Dub, Pavel A., Economou, Sophia E., Barnes, Edwin, Mayhall, Nicholas J.

论文摘要

近期量子计算机有望通过准确的分子模拟促进材料和化学研究。几个发展已经表明,可以在当今的量子设备上评估小分子的准确地面态能。尽管电子激发的状态在化学过程和应用中起着至关重要的作用,但仍在寻找对近期量子设备进行常规激发状态计算的可靠和实用方法。受量子化学中统一耦合群集理论开发的激发态方法的启发,我们提出了一种基于运动方程的方法,该方法遵循量子计算机上的基本状态计算的变异量子量子量化算法来计算激发能量。我们在H $ _2 $,H $ _4 $,H $ _2 $ O和LIH分子上执行数值模拟,以测试我们的量子自洽运动方程(Q-SC-EOM)方法,并将其与其他当前的最新方法进行比较。 Q-SC-EOM利用自洽的操作员满足真空歼灭条件,这是准确计算的关键属性。它提供了与垂直激发能,电离电位和电子亲和力相对应的真实大小密集的能量差。我们还发现,与当前可用的方法相比,Q-SC-EOM更适合在NISQ设备上实现,因为它预计对噪声更具弹性。

Near-term quantum computers are expected to facilitate material and chemical research through accurate molecular simulations. Several developments have already shown that accurate ground-state energies for small molecules can be evaluated on present-day quantum devices. Although electronically excited states play a vital role in chemical processes and applications, the search for a reliable and practical approach for routine excited-state calculations on near-term quantum devices is ongoing. Inspired by excited-state methods developed for the unitary coupled-cluster theory in quantum chemistry, we present an equation-of-motion-based method to compute excitation energies following the variational quantum eigensolver algorithm for ground-state calculations on a quantum computer. We perform numerical simulations on H$_2$, H$_4$, H$_2$O, and LiH molecules to test our quantum self-consistent equation-of-motion (q-sc-EOM) method and compare it to other current state-of-the-art methods. q-sc-EOM makes use of self-consistent operators to satisfy the vacuum annihilation condition, a critical property for accurate calculations. It provides real and size-intensive energy differences corresponding to vertical excitation energies, ionization potentials and electron affinities. We also find that q-sc-EOM is more suitable for implementation on NISQ devices as it is expected to be more resilient to noise compared with the currently available methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源