论文标题
稳健飞行控制的神经移动视野估计
Neural Moving Horizon Estimation for Robust Flight Control
论文作者
论文摘要
估计和对干扰的反应对于二次运输的稳健飞行控制至关重要。现有的估计器通常需要对特定的飞行方案或具有广泛地面真相干扰数据的培训进行重大调整,以实现令人满意的性能。在本文中,我们提出了一个神经移动量估计器(NeuroMhe),该估计量可以自动调整其由神经网络建模并适应不同飞行方案的关键参数。我们通过在MHE加权矩阵中得出MHE估计值的分析梯度来实现这一目标,从而使MHE无缝嵌入将MHE作为可学习层的无缝嵌入到神经网络中,以进行高效学习。有趣的是,我们表明可以使用递归形式的卡尔曼过滤器有效地计算梯度。此外,我们开发了一种基于模型的策略梯度算法,可以直接从四轨轨迹跟踪误差直接训练神经元,而无需地面真相干扰数据。通过对各种具有挑战性的飞行中的四肢旋转器进行的模拟和物理实验,可以广泛验证NeuroMhe的有效性。值得注意的是,NeuroMhe的表现优于最先进的基于神经网络的估计器,将力估计错误降低了76.7%,而使用的是仅具有后者可学习参数7.7%的便携式神经网络。所提出的方法是一般的,可以应用于对其他机器人系统的稳健自适应控制。
Estimating and reacting to disturbances is crucial for robust flight control of quadrotors. Existing estimators typically require significant tuning for a specific flight scenario or training with extensive ground-truth disturbance data to achieve satisfactory performance. In this paper, we propose a neural moving horizon estimator (NeuroMHE) that can automatically tune its key parameters modeled by a neural network and adapt to different flight scenarios. We achieve this by deriving the analytical gradients of the MHE estimates with respect to the MHE weighting matrices, which enables a seamless embedding of the MHE as a learnable layer into the neural network for highly effective learning. Interestingly, we show that the gradients can be computed efficiently using a Kalman filter in a recursive form. Moreover, we develop a model-based policy gradient algorithm to train NeuroMHE directly from the quadrotor trajectory tracking error without needing the ground-truth disturbance data. The effectiveness of NeuroMHE is verified extensively via both simulations and physical experiments on quadrotors in various challenging flights. Notably, NeuroMHE outperforms a state-of-the-art neural network-based estimator, reducing force estimation errors by up to 76.7%, while using a portable neural network that has only 7.7% of the learnable parameters of the latter. The proposed method is general and can be applied to robust adaptive control of other robotic systems.