论文标题
在猜想的deaconescu上
On a conjecture of Deaconescu
论文作者
论文摘要
在2000年,deaconescu提出了一个问题,是否存在$ s_2(n)| ϕ(n)-1 $的复合$ n $,其中$ ϕ(n)$是euler的函数,而$ s_2(n)$是schemmel的基本函数。在本文中,我们证明任何这样的$ n $都是奇怪的,无方形的,至少具有七个不同的主要因素。我们还证明,任何具有$ k $ dinters prime除数的$ n $都必须小于$ 2^{2^{k+1}} $。
In 2000 Deaconescu raised a question whether there exists a composite $n$ for which $S_2(n)|ϕ(n)-1$, where $ϕ(n)$ is Euler's function and $S_2(n)$ is Schemmel's totient function. In this paper we prove that any such $n$ is odd, squarefree and has at least seven distinct prime factors. We also prove that any such $n$ with exactly $K$ distinct prime divisors is necessarily less than $2^{2^{K+1}}$.