论文标题

在有限特征的有限特征领域中,可证明是一种准化对数问题的准多项式算法

A provably quasi-polynomial algorithm for the discrete logarithm problem in finite fields of small characteristic

论文作者

Lido, Guido

论文摘要

我们描述了一种可证明的准多项式算法,以计算小特征有限字段的乘法组中的离散对数,即有限的字段,其特征在顺序上是对数的。我们部分遵循Barbulescu,Gaudry,Joux和Thome'提出的启发式化学算法。主要区别是根据椭圆曲线使用有限场的表示:椭圆曲线的丰度确保存在这种呈现。

We describe a provably quasi-polynomial algorithm to compute discrete logarithms in the multiplicative groups of finite fields of small characteristic, that is finite fields whose characteristic is logarithmic in the order. We partially follow the heuristically quasi-polynomial algorithm presented by Barbulescu, Gaudry, Joux and Thome'. The main difference is to use a presentation of the finite field based on elliptic curves: the abundance of elliptic curves ensures the existence of such a presentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源