论文标题

在离散的Safronov-dubovskii凝结方程:适当的,质量保存和渐近行为

On the discrete Safronov-Dubovskii coagulation equation: well-posedness, mass-conservation and asymptotic behaviour

论文作者

Ali, Mashkoor, Rai, Pooja, Giri, Ankik Kumar

论文摘要

显示了Safronov-Dubovskii凝血方程的全球质量较弱的解决方案的全球存在,显示了满足大尺寸的最大线性生长的凝结核。与以前的作品相反,证明主要依赖于de la vallee-poussin定理[8,定理7.1.6],这只需要初始条件的第一瞬间的有限性。通过显示必要的解决方案的规律性,可以表明本文结构的弱解决方案确实是经典的解决方案。在对初始数据的其他限制下,还显示了解决方案的唯一性。最后,还解决了对初始数据的持续依赖性和解决方案的大型行为。

The global existence of mass-conserving weak solutions to the Safronov-Dubovskii coagulation equation is shown for the coagulation kernels satisfying the at most linear growth for large sizes. In contrast to previous works, the proof mainly relies on the de la Vallee-Poussin theorem [8, Theorem 7.1.6], which only requires the finiteness of the first moment of the initial condition. By showing the necessary regularity of solutions, it is shown that the weak solutions con-structed herein are indeed classical solutions. Under additional restrictions on the initial data, the uniqueness of solutions is also shown. Finally, the continuous dependence on the initial data and the large-time behaviour of solutions are also addressed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源