论文标题
尖峰神经网络训练的波动驱动的初始化
Fluctuation-driven initialization for spiking neural network training
论文作者
论文摘要
尖峰神经网络(SNN)是大脑中低功率,耐故障信息处理的基础,并且在适当的神经形态硬件加速器上实施时,可能构成了传统深层神经网络的能力替代方案。但是,实例化解决复杂的计算任务的SNN在Silico中仍然是一个重大挑战。替代梯度(SG)技术已成为培训SNN端到端的标准解决方案。尽管如此,它们的成功取决于突触重量初始化,类似于常规的人工神经网络(ANN)。然而,与ANN不同,它仍然难以捉摸地构成SNN的良好初始状态。在这里,我们为受到大脑中通常观察到的波动驱动的策略启发的SNN制定了一般初始化策略。具体而言,我们为数据依赖性权重初始化提供了实用的解决方案,以确保广泛使用的泄漏的集成和传火(LIF)神经元的波动驱动。我们从经验上表明,经过SGS培训时,SNN遵循我们的策略表现出卓越的学习表现。这些发现概括了几个数据集和SNN体系结构,包括完全连接,深度卷积,经常性和更合理的SNN遵守戴尔定律。因此,波动驱动的初始化提供了一种实用,多功能且易于实现的策略,可改善神经形态工程和计算神经科学的各种任务的SNN训练性能。
Spiking neural networks (SNNs) underlie low-power, fault-tolerant information processing in the brain and could constitute a power-efficient alternative to conventional deep neural networks when implemented on suitable neuromorphic hardware accelerators. However, instantiating SNNs that solve complex computational tasks in-silico remains a significant challenge. Surrogate gradient (SG) techniques have emerged as a standard solution for training SNNs end-to-end. Still, their success depends on synaptic weight initialization, similar to conventional artificial neural networks (ANNs). Yet, unlike in the case of ANNs, it remains elusive what constitutes a good initial state for an SNN. Here, we develop a general initialization strategy for SNNs inspired by the fluctuation-driven regime commonly observed in the brain. Specifically, we derive practical solutions for data-dependent weight initialization that ensure fluctuation-driven firing in the widely used leaky integrate-and-fire (LIF) neurons. We empirically show that SNNs initialized following our strategy exhibit superior learning performance when trained with SGs. These findings generalize across several datasets and SNN architectures, including fully connected, deep convolutional, recurrent, and more biologically plausible SNNs obeying Dale's law. Thus fluctuation-driven initialization provides a practical, versatile, and easy-to-implement strategy for improving SNN training performance on diverse tasks in neuromorphic engineering and computational neuroscience.