论文标题
基于区域中心温度场的预测,对反流焊接的优化模拟
Optimization simulation of reflow welding based on prediction of regional center temperature field
论文作者
论文摘要
在集成电子产品的回流焊接之前,回流炉的温度控制曲线的数值模拟对于选择适当的参数和提高反流焊接过程和产品质量的总体效率至关重要。根据热传导定律和特定的热容量公式,获得了焊接区域的中心温度曲线相对于输送带位移炉中的温度分布功能的一阶普通微分方程。对于温度差较小的间隙,使用Sigmoid函数来获得平滑的间隔温度过渡曲线。对于较大温度差的间隙,使用指数函数和主函数的线性组合用于接近实际的凹功能,以便获得炉中的完整温度分布函数。焊接参数是通过求解普通微分方程来获得的,并且通过计算预测温度场和实际温度分布之间的均方误差来获得与过程边界一致的一组最佳过程参数。同时,为速度间隔预测策略,最小参数间隔预测策略以及最对称的参数间隔预测焊料糊融化回流区域设计了一组反流优化策略。仿真结果表明,通过此方法获得的温度场预测结果与实际传感器数据高度一致,并且具有很强的相关性。此方法可以帮助选择适当的过程参数,优化生产过程,减少设备调试实践并优化焊料联合生产产品的联合质量。
Before reflow soldering of integrated electronic products, the numerical simulation of temperature control curve of reflow furnace is crucial for selecting proper parameters and improving the overall efficiency of reflow soldering process and product quality. According to the heat conduction law and the specific heat capacity formula, the first-order ordinary differential equation of the central temperature curve of the welding area with respect to the temperature distribution function in the furnace on the conveyor belt displacement is obtained. For the gap with small temperature difference, the sigmoid function is used to obtain a smooth interval temperature transition curve; For the gap with large temperature difference, the linear combination of exponential function and primary function is used to approach the actual concave function, so as to obtain the complete temperature distribution function in the furnace. The welding parameters are obtained by solving the ordinary differential equation, and a set of optimal process parameters consistent with the process boundary are obtained by calculating the mean square error between the predicted temperature field and the real temperature distribution. At the same time, a set of reflow optimization strategies are designed for speed interval prediction strategy, minimum parameter interval prediction strategy, and the most symmetrical parameter interval prediction of solder paste melting reflow area. The simulation results show that the temperature field prediction results obtained by this method are highly consistent with the actual sensor data, and have strong correlation. This method can help to select appropriate process parameters, optimize the production process, reduce equipment commissioning practice and optimize the solder joint quality of production products.