论文标题
3个用户线性计算的容量广播
The Capacity of 3 User Linear Computation Broadcast
论文作者
论文摘要
$ k $用户线性计算广播(LCBC)问题由$ d $ dimensional数据(来自$ \ mathbb {f} _q $),该数据完全可用于中央服务器,$ k $用户(需要数据的各种线性计算),并且对数据的各种线性函数进行了辅助数据的先验知识。最佳的广播成本是每个计算实例服务器播放的$ q $ - ary符号的最低数量,以供每个用户检索其所需的计算。最佳广播成本的倒数称为容量。本文的主要贡献是$ k = 3 $用户LCBC的确切能力表征,即,对于任意有限字段$ \ mathbb {f} _q $,任意数据尺寸$ d $,以及对每个用户的任意线性辅助和需求。相反的一个显着方面是,与以前确定的$ 2 $用户LCBC不同,熵配方(指定了需求和侧面信息的熵,但没有其功能形式)不足以获得$ 3 $用户LCBC的紧密相反。相反,匡威利用功能性突出性。可实现性的显着方面包括将用户的集体信号空间分解为子空间,这些子空间允许广播成本的不同程度的效率,这揭示了一种折衷,从而导致了限制性水的解决方案。随机编码参数被调用以解决由于每个用户对这些子空间的不同视图而出现的兼容性问题,并以其自身的侧面信息为条件。
The $K$ User Linear Computation Broadcast (LCBC) problem is comprised of $d$ dimensional data (from $\mathbb{F}_q$), that is fully available to a central server, and $K$ users, who require various linear computations of the data, and have prior knowledge of various linear functions of the data as side-information. The optimal broadcast cost is the minimum number of $q$-ary symbols to be broadcast by the server per computation instance, for every user to retrieve its desired computation. The reciprocal of the optimal broadcast cost is called the capacity. The main contribution of this paper is the exact capacity characterization for the $K=3$ user LCBC for all cases, i.e., for arbitrary finite fields $\mathbb{F}_q$, arbitrary data dimension $d$, and arbitrary linear side-informations and demands at each user. A remarkable aspect of the converse is that unlike the $2$ user LCBC whose capacity was determined previously, the entropic formulation (where the entropies of demands and side-informations are specified, but not their functional forms) is insufficient to obtain a tight converse for the $3$ user LCBC. Instead, the converse exploits functional submodularity. Notable aspects of achievability include a decomposition of the users' collective signal space into subspaces that allow different degrees of efficiency in broadcast cost, revealing a tradeoff that leads to a constrained water-filling solution. Random coding arguments are invoked to resolve compatibility issues that arise as each user has a different view of these subspaces, conditioned on its own side-information.