论文标题

通过可调信息瓶颈和Rényi措施分类,公平和紧凑性

Classification Utility, Fairness, and Compactness via Tunable Information Bottleneck and Rényi Measures

论文作者

Gronowski, Adam, Paul, William, Alajaji, Fady, Gharesifard, Bahman, Burlina, Philippe

论文摘要

设计机器学习算法是准确但公平的,而不是基于任何敏感属性进行区分的,对于社会接受对关键应用的AI至关重要。在本文中,我们提出了一种新颖的公平表示方法,称为Rényi公平信息瓶颈方法(RFIB),该方法包含了代表性的效用,公平性和紧凑性(压缩)的约束,并将其应用于图像和表格数据分类。我们方法的一个关键属性是,与大多数先前的工作相反,我们认为人口统计学和均等的赔率是公平的限制,从而使对这两个标准的满意度更加细致。利用各种方法,我们表明我们的目标产生了涉及经典信息瓶颈(IB)度量的损失函数,并根据两种rényi量度的指标来建立上限,以$α$的订单$α$在共同信息IB期限ib期限中测量输入及其编码嵌入之间的紧凑性。我们研究$α$参数的影响以及其他两个可调IB参数对实现效用/公平性权衡目标的影响,并表明$α$参数提供了额外的自由度,可用于控制表示的紧凑性。在三个不同的图像数据集(Eyepacs,celeba和Fairface)和两个表格数据集(成人和Compas)上进行实验,使用二进制和分类敏感属性,我们表明,在各种效用,公平和复杂的效用/公平度量方面,RFIB RFIB RFIB RFIB RFIB均超过了当前的正常方法。

Designing machine learning algorithms that are accurate yet fair, not discriminating based on any sensitive attribute, is of paramount importance for society to accept AI for critical applications. In this article, we propose a novel fair representation learning method termed the Rényi Fair Information Bottleneck Method (RFIB) which incorporates constraints for utility, fairness, and compactness (compression) of representation, and apply it to image and tabular data classification. A key attribute of our approach is that we consider - in contrast to most prior work - both demographic parity and equalized odds as fairness constraints, allowing for a more nuanced satisfaction of both criteria. Leveraging a variational approach, we show that our objectives yield a loss function involving classical Information Bottleneck (IB) measures and establish an upper bound in terms of two Rényi measures of order $α$ on the mutual information IB term measuring compactness between the input and its encoded embedding. We study the influence of the $α$ parameter as well as two other tunable IB parameters on achieving utility/fairness trade-off goals, and show that the $α$ parameter gives an additional degree of freedom that can be used to control the compactness of the representation. Experimenting on three different image datasets (EyePACS, CelebA, and FairFace) and two tabular datasets (Adult and COMPAS), using both binary and categorical sensitive attributes, we show that on various utility, fairness, and compound utility/fairness metrics RFIB outperforms current state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源