论文标题

非线性弹性,通过消失的非本地自我抑制

Nonlinear elasticity with vanishing nonlocal self-repulsion

论文作者

Krömer, Stefan, Reiter, Philipp

论文摘要

我们证明,对于可允许变形的外部失真的非线性弹性能量,几乎所有地方的全球可逆性都可以在$γ$的弹性能量中获得,并具有添加的非局部自我抑制项,并具有非邻近分消失的系数。此处考虑的自我抑制项与反变形的sobolev-slobodecki per eminor正式相吻合。还研究了边界附近或域表面上的变体。

We prove that that for nonlinear elastic energies with strong enough energetic control of the outer distortion of admissible deformations, almost everywhere global invertibility as constraint can be obtained in the $Γ$-limit of the elastic energy with an added nonlocal self-repulsion term with asymptocially vanishing coefficient. The self-repulsion term considered here formally coincides with a Sobolev-Slobodeckiĭ seminorm of the inverse deformation. Variants near the boundary or on the surface of the domain are also studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源