论文标题
通过调整后的Sigmoid函数和2-simplex Sructure的时间链接预测
Temporal Link Prediction via Adjusted Sigmoid Function and 2-Simplex Sructure
论文作者
论文摘要
时间网络链接预测是网络科学领域的重要任务,并且在实际情况下具有广泛的应用。揭示网络的进化机制对于链接预测至关重要,如何有效利用历史信息来实现时间链接并有效提取网络结构的高阶模式仍然是一个至关重要的挑战。为了解决这些问题,在本文中,我们提出了一个具有调整后的Sigmoid函数和2-simplex结构(TLPSS)的新型时间链接预测模型。调整后的Sigmoid衰减模式将边缘的主动,衰减和稳定状态考虑在内,这适当适合信息的生命周期。此外,引入了由单纯形高阶结构组成的潜在矩阵序列,以增强链接预测方法的性能,因为它在稀疏网络中非常可行。结合信息的生命周期和单纯级结构,通过满足动态网络中时间和结构信息的一致性来实现TLPS的整体性能。六个现实世界数据集的实验结果证明了TLPS的有效性,与其他基线方法相比,我们提出的模型平均提高了链接预测的性能15%。
Temporal network link prediction is an important task in the field of network science, and has a wide range of applications in practical scenarios. Revealing the evolutionary mechanism of the network is essential for link prediction, and how to effectively utilize the historical information for temporal links and efficiently extract the high-order patterns of network structure remains a vital challenge. To address these issues, in this paper, we propose a novel temporal link prediction model with adjusted sigmoid function and 2-simplex structure (TLPSS). The adjusted sigmoid decay mode takes the active, decay and stable states of edges into account, which properly fits the life cycle of information. Moreover, the latent matrix sequence is introduced, which is composed of simplex high-order structure, to enhance the performance of link prediction method since it is highly feasible in sparse network. Combining the life cycle of information and simplex high-order structure, the overall performance of TLPSS is achieved by satisfying the consistency of temporal and structural information in dynamic networks. Experimental results on six real-world datasets demonstrate the effectiveness of TLPSS, and our proposed model improves the performance of link prediction by an average of 15% compared to other baseline methods.