论文标题

Kerr-Newman时空与云弦,典型和电磁场的一致性

Integrability of Kerr-Newman spacetime with cloud strings, quintessence and electromagnetic field

论文作者

Cao, Wenfu, Liu, Wenfang, Wu, Xin

论文摘要

带电颗粒围绕着一个被云弦包围的Kerr-Newman黑洞移动的动力学,典型和电磁场由于存在像Carter常数一样的第四个运动常数,因此可以整合。时空的第四个运动常数和轴向对称性为在二维平面中具有稳定的圆形轨道(例如赤道平面和其他非试量平面)中构成径向有效电位的存在。它们还可以在三维空间中具有稳定的球形轨道存在径向有效电位的可能性。动态参数在更改有效电位的图表中起着重要作用。此外,这些参数的变化会影响稳定的圆形轨道的存在,最内向的圆形轨道,稳定的球形轨道以及边缘稳定的球形轨道。它们还会影响稳定的圆形或球形轨道的半径。从数值上表明,稳定的圆形轨道和最内向的稳定圆形轨道不仅可以存在于赤道平面中,而且还可以存在于非Quoratial平面中。几个稳定的球形轨道以及边缘稳定的球形轨道也被数值确认。特别是,有一些稳定的球形轨道和边缘稳定的球形轨道,具有消失的角动量,以覆盖整个纬度坐标的范围。

The dynamics of charged particles moving around a Kerr-Newman black hole surrounded by cloud strings, quintessence and electromagnetic field is integrable due to the presence of a fourth constant of motion like the Carter constant. The fourth motion constant and the axial-symmetry of the spacetime give a chance to the existence of radial effective potentials with stable circular orbits in two-dimensional planes, such as the equatorial plane and other nonequatorial planes. They also give a possibility of the presence of radial effective potentials with stable spherical orbits in the three-dimensional space. The dynamical parameters play important roles in changing the graphs of the effective potentials. In addition, variations of these parameters affect the presence or absence of stable circular orbits, innermost stable circular orbits, stable spherical orbits and marginally stable spherical orbits. They also affect the radii of the stable circular or spherical orbits. It is numerically shown that the stable circular orbits and innermost stable circular orbits can exist not only in the equatorial plane but also in the nonequatorial planes. Several stable spherical orbits and marginally stable spherical orbits are numerically confirmed, too. In particular, there are some stable spherical orbits and marginally stable spherical orbits with vanishing angular momenta for covering whole the range of the latitudinal coordinate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源