论文标题

用双暴露传感器捕获的高动态范围序列的视频框架插值

Video frame interpolation for high dynamic range sequences captured with dual-exposure sensors

论文作者

Çoğalan, Uğur, Bemana, Mojtaba, Seidel, Hans-Peter, Myszkowski, Karol

论文摘要

视频框架插值(VFI)实现了许多可能涉及时间域的重要应用程序,例如慢运动播放或空间域,例如停止运动序列。我们专注于以前的任务,其中关键挑战之一是在存在复杂运动的情况下处理高动态范围(HDR)场景。为此,我们探索了双曝光传感器的可能优势,这些传感器很容易提供尖锐的短而模糊的长曝光,这些曝光是空间注册的,并且其末端在时间上对齐。这样,运动模糊会在场景运动上暂时连续的信息,这些信息与尖锐的参考相结合,可以在单个相机拍摄中进行更精确的运动采样。我们证明,这有助于在VFI任务中进行更复杂的运动重建,以及HDR框架重建,迄今仅考虑到最初被捕获的帧而不是插值之间的框架。我们设计了一个在这些任务中训练的神经网络,这些神经网络明显优于现有解决方案。我们还提出了一个场景运动复杂性的度量,该指标在测试时为VFI方法的性能提供了重要的见解。

Video frame interpolation (VFI) enables many important applications that might involve the temporal domain, such as slow motion playback, or the spatial domain, such as stop motion sequences. We are focusing on the former task, where one of the key challenges is handling high dynamic range (HDR) scenes in the presence of complex motion. To this end, we explore possible advantages of dual-exposure sensors that readily provide sharp short and blurry long exposures that are spatially registered and whose ends are temporally aligned. This way, motion blur registers temporally continuous information on the scene motion that, combined with the sharp reference, enables more precise motion sampling within a single camera shot. We demonstrate that this facilitates a more complex motion reconstruction in the VFI task, as well as HDR frame reconstruction that so far has been considered only for the originally captured frames, not in-between interpolated frames. We design a neural network trained in these tasks that clearly outperforms existing solutions. We also propose a metric for scene motion complexity that provides important insights into the performance of VFI methods at the test time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源