论文标题

对进化多目标聚类中应用的目标函数的可接受性的分析

An Analysis of the Admissibility of the Objective Functions Applied in Evolutionary Multi-objective Clustering

论文作者

Morimoto, Cristina Y., Pozo, Aurora, de Souto, Marcílio C. P.

论文摘要

在进化多目标聚类方法(EMOC)中,已将各种聚类标准应用于目标函数。但是,大多数EMOC并未提供有关目标功能的选择和使用的详细分析。旨在支持eMOC中目标的更好的选择和定义,本文提出了通过检查搜索方向及其找到最佳结果的潜力来分析进化优化中聚类标准的可采性。结果,我们证明了目标函数的可接受性如何影响优化。此外,我们还提供有关eMOC中聚类标准的组合和使用的见解。

A variety of clustering criteria has been applied as an objective function in Evolutionary Multi-Objective Clustering approaches (EMOCs). However, most EMOCs do not provide detailed analysis regarding the choice and usage of the objective functions. Aiming to support a better choice and definition of the objectives in the EMOCs, this paper proposes an analysis of the admissibility of the clustering criteria in evolutionary optimization by examining the search direction and its potential in finding optimal results. As a result, we demonstrate how the admissibility of the objective functions can influence the optimization. Furthermore, we provide insights regarding the combinations and usage of the clustering criteria in the EMOCs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源