论文标题
SQG方程的快速旋转和无粘性限制,并具有一般准备不足的初始数据
Fast rotation and inviscid limits for the SQG equation with general ill-prepared initial data
论文作者
论文摘要
在本文中,我们研究了2-D耗散表面准晶状体方程的快速旋转和无粘性极限,并具有分散强迫项$ a \ Mathcal {r} _ {1} \ vartheta $,in域$ω= = \ nathbb {t}^{t}^{t}^{1} $}在我们执行快速旋转限制(保持粘度固定)的情况下,在一般编制的初始数据的背景下,我们证明了极限动力学由线性方程描述。另一方面,执行合并的快速旋转和无粘性限制,我们表明初始数据$ \ overline {\ vartheta} _ {0} $沿着运动运输。收敛的证明是基于Aubin-Lions引理的应用。
In the present paper, we study the fast rotation and inviscid limits for the 2-D dissipative surface quasi-geostrophic equation with a dispersive forcing term $A \mathcal{R}_{1} \vartheta$, in the domain $Ω=\mathbb{T}^{1} \times \mathbb{R}$. In the case when we perform the fast rotation limit (keeping the viscosity fixed), in the context of general ill-prepared initial data, we prove that the limit dynamics is described by a linear equation. On the other hand, performing the combined fast rotation and inviscid limits, we show that the initial data $\overline{\vartheta}_{0}$ is transported along the motion. The proof of the convergence is based on an application of the Aubin-Lions lemma.