论文标题
经济领域中的论证文本生成
Argumentative Text Generation in Economic Domain
论文作者
论文摘要
大型和超大语言模型的开发,例如GPT-3,T5,Switch Transformer,Ernie等,已经显着改善了文本生成的性能。该领域的重要研究方向之一是产生具有争论的文本。该问题的解决方案可用于商务会议,政治辩论,对话系统,以准备学生论文。这些应用的主要领域之一是经济领域。俄罗斯语言的论证文本生成的关键问题是缺乏带注释的论点语料库。在本文中,我们将论证性微观Xt,有说服力的论文和UKP句子Corpora的翻译版本用于微调Rubert模型。此外,该模型用于通过论证来注释经济新闻的语料库。然后使用带注释的语料库微调Rugpt-3模型,该模型生成参数文本。结果表明,与原始的Rugpt-3模型相比,这种方法将参数生成的准确性提高了20个百分点(63.2 \%vs. 42.5 \%)。
The development of large and super-large language models, such as GPT-3, T5, Switch Transformer, ERNIE, etc., has significantly improved the performance of text generation. One of the important research directions in this area is the generation of texts with arguments. The solution of this problem can be used in business meetings, political debates, dialogue systems, for preparation of student essays. One of the main domains for these applications is the economic sphere. The key problem of the argument text generation for the Russian language is the lack of annotated argumentation corpora. In this paper, we use translated versions of the Argumentative Microtext, Persuasive Essays and UKP Sentential corpora to fine-tune RuBERT model. Further, this model is used to annotate the corpus of economic news by argumentation. Then the annotated corpus is employed to fine-tune the ruGPT-3 model, which generates argument texts. The results show that this approach improves the accuracy of the argument generation by more than 20 percentage points (63.2\% vs. 42.5\%) compared to the original ruGPT-3 model.