论文标题
contocation2Text:可控文本生成俄语中的指南短语
Collocation2Text: Controllable Text Generation from Guide Phrases in Russian
论文作者
论文摘要
大型预训练的语言模型能够产生多种多样的文本。从提示开始,这些模型产生了一种可以不可预测的叙述。现有的可控文本生成方法,这些方法指导用户指定方向的文本中的叙述,需要创建培训语料库和额外的耗时培训程序。本文提出并调查了Contocation2Text,这是一种用于俄罗斯自动可控文本生成的插件方法,不需要微调。该方法基于两个交互模型:自回归语言Rugpt-3模型和自动编码语言Ruroberta模型。该方法的想法是根据自动编码模型的输出分布将自回归模型的输出分布转移,以确保文本中叙事的连贯过渡到指南,该词组可以包含单个单词或搭配。能够考虑到令牌的左和右下方的自动编码模型“告诉”“自动回归模型”,该模型在当前一代步骤中是最不合逻辑的,从而增加或降低了相应令牌的概率。使用所提出的方法生成新闻文章的实验显示了其对自动生成的流利文本的有效性,这些文本包含用户指定的短语之间的连贯过渡。
Large pre-trained language models are capable of generating varied and fluent texts. Starting from the prompt, these models generate a narrative that can develop unpredictably. The existing methods of controllable text generation, which guide the narrative in the text in the user-specified direction, require creating a training corpus and an additional time-consuming training procedure. The paper proposes and investigates Collocation2Text, a plug-and-play method for automatic controllable text generation in Russian, which does not require fine-tuning. The method is based on two interacting models: the autoregressive language ruGPT-3 model and the autoencoding language ruRoBERTa model. The idea of the method is to shift the output distribution of the autoregressive model according to the output distribution of the autoencoding model in order to ensure a coherent transition of the narrative in the text towards the guide phrase, which can contain single words or collocations. The autoencoding model, which is able to take into account the left and right contexts of the token, "tells" the autoregressive model which tokens are the most and least logical at the current generation step, increasing or decreasing the probabilities of the corresponding tokens. The experiments on generating news articles using the proposed method showed its effectiveness for automatically generated fluent texts which contain coherent transitions between user-specified phrases.