论文标题

在有界度图上近似最大切割:FKL算法的更严格的分析

Approximating Max-Cut on Bounded Degree Graphs: Tighter Analysis of the FKL Algorithm

论文作者

Hsieh, Jun-Ting, Kothari, Pravesh K.

论文摘要

在本说明中,我们描述了$α_{gw} + \tildeΩ(1/d^2)$ - 在$ \ leq d $的加权图上最大切割的factor actial近似算法。在这里,$α_{gw} \大约0.878 $是用于最大切割的goemans-williamson圆形的最差案例近似值。这改善了Feige,Karpinski和Langberg and Florre的先前未加权图的结果。我们的保证是通过对解决方案的更严格的分析,通过将自然的局部改进程序应用于以三角形不平等增强的基本SDP的goemans-williamson圆形。

In this note, we describe a $α_{GW} + \tildeΩ(1/d^2)$-factor approximation algorithm for Max-Cut on weighted graphs of degree $\leq d$. Here, $α_{GW}\approx 0.878$ is the worst-case approximation ratio of the Goemans-Williamson rounding for Max-Cut. This improves on previous results for unweighted graphs by Feige, Karpinski, and Langberg and Florén. Our guarantee is obtained by a tighter analysis of the solution obtained by applying a natural local improvement procedure to the Goemans-Williamson rounding of the basic SDP strengthened with triangle inequalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源