论文标题
一个用于早期乳腺癌检测的PCA-MLP联合网络
A Combined PCA-MLP Network for Early Breast Cancer Detection
论文作者
论文摘要
乳腺癌是所有癌症类型的第二大责任,多年来一直是许多死亡的原因,尤其是在女性中。现有诊断系统的任何即兴创作以检测癌症,都可以最大程度地减少死亡率。此外,在早期阶段的癌症检测是科学界的主要研究领域,以提高生存率。正确选择机器学习工具可以确保高精度的早期预后。在本文中,我们研究了不同的机器学习算法,以检测患者是否可能面临乳腺癌。由于早期特征的隐式行为,我们实施了与PCA集成的多层感知模型,并建议它比其他检测算法更可行。我们的4层MLP-PCA网络在BCCD数据集中获得了100%的最佳精度,平均精度为90.48%。
Breast cancer is the second most responsible for all cancer types and has been the cause of numerous deaths over the years, especially among women. Any improvisation of the existing diagnosis system for the detection of cancer can contribute to minimizing the death ratio. Moreover, cancer detection at an early stage has recently been a prime research area in the scientific community to enhance the survival rate. Proper choice of machine learning tools can ensure early-stage prognosis with high accuracy. In this paper, we have studied different machine learning algorithms to detect whether a patient is likely to face breast cancer or not. Due to the implicit behavior of early-stage features, we have implemented a multilayer perception model with the integration of PCA and suggested it to be more viable than other detection algorithms. Our 4 layers MLP-PCA network has obtained the best accuracy of 100% with a mean of 90.48% accuracy on the BCCD dataset.