论文标题
模棱两可的管MPC
Ambiguity Tube MPC
论文作者
论文摘要
本文是针对非线性随机过程的一类分布强大的模型预测控制器(MPC),这些过程通过在状态概率度量的空间中传播歧义集来评估风险和控制绩效指标。提出了用于制定这种歧义管MPC控制器的框架,该框架基于最佳运输理论领域的现代测量方法。此外,提出了一种基于超级马丁的分析技术,从而为线性和非线性系统提供了大量的分布稳健控制器的随机稳定性结果。在这种情况下,我们还讨论了如何为随机且分布强大的MPC构建终端成本函数,以确保闭环稳定性和渐近融合到可靠的不变集。通过教程风格的示例和数值案例研究来说明相应的理论发展。
This paper is about a class of distributionally robust model predictive controllers (MPC) for nonlinear stochastic processes that evaluate risk and control performance measures by propagating ambiguity sets in the space of state probability measures. A framework for formulating such ambiguity tube MPC controllers is presented, which is based on modern measure-theoretic methods from the field of optimal transport theory. Moreover, a supermartingale based analysis technique is proposed, leading to stochastic stability results for a large class of distributionally robust controllers for linear and nonlinear systems. In this context, we also discuss how to construct terminal cost functions for stochastic and distributionally robust MPC that ensure closed-loop stability and asymptotic convergence to robust invariant sets. The corresponding theoretical developments are illustrated by tutorial-style examples and a numerical case study.