论文标题
通用中心化的同源镜对称性
Homological Mirror Symmetry for the universal centralizers
论文作者
论文摘要
我们证明了通用centralizer $ j_g $(又称toda空间)的同源镜子对称性,与任何复杂的还原谎言组$ g $相关。 A侧是$ J_G $的部分包装的福卡亚类别,而B面是Weyl group Action在双重最大圆环上的分类商上的连贯滑轮类别(如果$ G $的中心未连接,则进行了一些修改)。
We prove homological mirror symmetry for the universal centralizer $J_G$ (a.k.a the Toda space), associated to any complex reductive Lie group $G$. The A-side is a partially wrapped Fukaya category on $J_G$, and the B-side is the category of coherent sheaves on the categorical quotient of a dual maximal torus by the Weyl group action (with some modification if the center of $G$ is not connected).