论文标题

流感预测流行病学模型的随机森林

Random Forest of Epidemiological Models for Influenza Forecasting

论文作者

Aawar, Majd Al, Srivastava, Ajitesh

论文摘要

预测流感病毒引起的住院治疗对于公共卫生计划至关重要,因此可以为大量患者做好准备。在流感季节中实时使用了许多预测方法,并提交给疾病预防控制中心进行公共交流。预测模型范围从机械模型和自动回归模型到机器学习模型。我们假设我们可以使用多个机械模型生成潜在的轨迹并使用机器学习来学习如何将这些轨迹结合到改进的预测中,从而改善预测。我们提出了一种树木合奏模型设计,该设计利用基线模型Sikjalpha的各个预测指标来提高其性能。每个预测因子都是通过更改一组超参数来生成的。我们将用于Flusight Challenge(2022)的前瞻性预测与所有其他提交的方法进行了比较。我们的方法是完全自动化的,不需要任何手动调整。我们证明,基于森林的随机方法能够从平均绝对误差,覆盖范围和加权间隔评分方面对单个预测变量的预测提高。我们的方法根据平均绝对误差和基于当前季节所有每周提交的平均值(2022)的平均值来优于所有其他模型。随机森林(通过对树木的分析)的解释能力使我们能够深入了解其如何改善单个预测因子。

Forecasting the hospitalizations caused by the Influenza virus is vital for public health planning so that hospitals can be better prepared for an influx of patients. Many forecasting methods have been used in real-time during the Influenza seasons and submitted to the CDC for public communication. The forecasting models range from mechanistic models, and auto-regression models to machine learning models. We hypothesize that we can improve forecasting by using multiple mechanistic models to produce potential trajectories and use machine learning to learn how to combine those trajectories into an improved forecast. We propose a Tree Ensemble model design that utilizes the individual predictors of our baseline model SIkJalpha to improve its performance. Each predictor is generated by changing a set of hyper-parameters. We compare our prospective forecasts deployed for the FluSight challenge (2022) to all the other submitted approaches. Our approach is fully automated and does not require any manual tuning. We demonstrate that our Random Forest-based approach is able to improve upon the forecasts of the individual predictors in terms of mean absolute error, coverage, and weighted interval score. Our method outperforms all other models in terms of the mean absolute error and the weighted interval score based on the mean across all weekly submissions in the current season (2022). Explainability of the Random Forest (through analysis of the trees) enables us to gain insights into how it improves upon the individual predictors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源