论文标题
用ptychographic otomic电子断层扫描求解复杂的纳米结构
Solving Complex Nanostructures With Ptychographic Atomic Electron Tomography
论文作者
论文摘要
透射电子显微镜(TEM)是一种有效的技术,用于测定结构生物学和材料科学中样品的三维原子尺度结构。在结构生物学中,蛋白质的三维结构通常使用来自数千种相同蛋白质的相对比对比度单粒子冷冻素电子显微镜进行确定,并且重建已达到特定蛋白质的原子分辨率。在材料科学中,使用环形暗场(ADF)扫描透射透射电子显微镜(STEM)和原子峰的子像素定位的组合在材料科学中,已经确定了复杂纳米材料的三维原子结构,该方法术语术语的原子层析成像(AET)。但是,这些方法都不能确定包含光元素的异质纳米材料的三维原子结构。在这里,我们从3450万个衍射模式中执行混合态电子PTYCHOPHY,以重建一个高分辨率倾斜系列的双壁碳纳米管(DW-CNT),封装了一个复杂的$ \ mathrm {Zrte} $夹克结构。在重建体积中,原子峰的所得重建和子像素定位的类平均揭示了核心壳异质结构的复杂的三维原子结构,具有17个图表精度。从这些测量值中,我们求解了完整的$ \ mathrm {zr_ {11} te_ {50}} $结构,其中包含一个以前未观察到的$ \ mathrm {zrte_ {zrte_ {2}} $ phase in Core。 Ptychographic Anomic电子断层扫描(PAET)的实验实现将允许结构确定横梁敏感或包含光元素的广泛纳米材料。
Transmission electron microscopy (TEM) is a potent technique for the determination of three-dimensional atomic scale structure of samples in structural biology and materials science. In structural biology, three-dimensional structures of proteins are routinely determined using phase-contrast single-particle cryo-electron microscopy from thousands of identical proteins, and reconstructions have reached atomic resolution for specific proteins. In materials science, three-dimensional atomic structures of complex nanomaterials have been determined using a combination of annular dark field (ADF) scanning transmission electron microscopic (STEM) tomography and subpixel localization of atomic peaks, in a method termed atomic electron tomography (AET). However, neither of these methods can determine the three-dimensional atomic structure of heterogeneous nanomaterials containing light elements. Here, we perform mixed-state electron ptychography from 34.5 million diffraction patterns to reconstruct a high-resolution tilt series of a double wall-carbon nanotube (DW-CNT), encapsulating a complex $\mathrm{ZrTe}$ sandwich structure. Class averaging of the resulting reconstructions and subpixel localization of the atomic peaks in the reconstructed volume reveals the complex three-dimensional atomic structure of the core-shell heterostructure with 17 picometer precision. From these measurements, we solve the full $\mathrm{Zr_{11}Te_{50}}$ structure, which contains a previously unobserved $\mathrm{ZrTe_{2}}$ phase in the core. The experimental realization of ptychographic atomic electron tomography (PAET) will allow for structural determination of a wide range of nanomaterials which are beam-sensitive or contain light elements.