论文标题
塔瓦:无模板的动画体积演员
TAVA: Template-free Animatable Volumetric Actors
论文作者
论文摘要
基于坐标的体积表示有可能从图像中生成光真实的虚拟化身。但是,即使是可能未观察到的新姿势,虚拟化身也需要控制。传统技术(例如LBS)提供了这样的功能;但是,通常需要手工设计的车身模板,3D扫描数据和有限的外观模型。另一方面,神经表示在表示视觉细节方面具有强大的作用,但在变形动态铰接的参与者方面受到了探索。在本文中,我们提出了TAVA,这是一种基于神经表示形式创建不含T implate的动画体积参与者的方法。我们仅依靠多视图数据和跟踪的骨骼来创建演员的体积模型,该模型可以在给定的新颖姿势的测试时间进行动画。由于Tava不需要身体模板,因此它适用于人类以及其他生物(例如动物)。此外,Tava的设计使其可以恢复准确的密集对应关系,从而使其适合于内容创建和编辑任务。通过广泛的实验,我们证明了所提出的方法可以很好地推广到新颖的姿势以及看不见的观点和展示基本的编辑功能。
Coordinate-based volumetric representations have the potential to generate photo-realistic virtual avatars from images. However, virtual avatars also need to be controllable even to a novel pose that may not have been observed. Traditional techniques, such as LBS, provide such a function; yet it usually requires a hand-designed body template, 3D scan data, and limited appearance models. On the other hand, neural representation has been shown to be powerful in representing visual details, but are under explored on deforming dynamic articulated actors. In this paper, we propose TAVA, a method to create T emplate-free Animatable Volumetric Actors, based on neural representations. We rely solely on multi-view data and a tracked skeleton to create a volumetric model of an actor, which can be animated at the test time given novel pose. Since TAVA does not require a body template, it is applicable to humans as well as other creatures such as animals. Furthermore, TAVA is designed such that it can recover accurate dense correspondences, making it amenable to content-creation and editing tasks. Through extensive experiments, we demonstrate that the proposed method generalizes well to novel poses as well as unseen views and showcase basic editing capabilities.