论文标题
$ n- $网站磷酸化网络中多立场的参数区域
Parameter region for multistationarity in $n-$site phosphorylation networks
论文作者
论文摘要
多站点磷酸化是一种众所周知的信号机制,可引起多个稳态,这是一种称为多立法性的属性。当磷酸化以顺序和分布方式发生时,我们获得了一个由磷酸化位点$ n $的网络谱系。这项工作解决了理解该网络家族显示多站点的参数区域的问题,该问题通过关注该区域在动力学参数集上的投影。该问题在实际代数几何形状的背景下进行了措辞,并减少为研究的多项式是否定义为大小三的参数矩阵的决定因素,在正矫正器上达到了负值。多项式的系数是动力学参数的函数。对于任何$ n $,我们提供了足够的条件,使多项式具有正值,因此排除了多种性,并且还足够的条件使其达到负值,从而实现了多种性。这些条件是通过利用多项式(其牛顿多层人士)和采用电路多项式的结构来得出的。我们结果的一个相关结果是,启用或排除多站点的一组动力学参数均与所有$ n $连接。
Multisite phosphorylation is a signaling mechanism well known to give rise to multiple steady states, a property termed multistationarity. When phosphorylation occurs in a sequential and distributive manner, we obtain a family of networks indexed by the number of phosphorylation sites $n$. This work addresses the problem of understanding the parameter region where this family of networks displays multistationarity, by focusing on the projection of this region onto the set of kinetic parameters. The problem is phrased in the context of real algebraic geometry and reduced to studying whether a polynomial, defined as the determinant of a parametric matrix of size three, attains negative values over the positive orthant. The coefficients of the polynomial are functions of the kinetic parameters. For any $n$, we provide sufficient conditions for the polynomial to be positive and hence, preclude multistationarity, and also sufficient conditions for it to attain negative values and hence, enable multistationarity. These conditions are derived by exploiting the structure of the polynomial, its Newton polytope, and employing circuit polynomials. A relevant consequence of our results is that the set of kinetic parameters that enable or preclude multistationarity are both connected for all $n$.