论文标题

Cherrier-escobar问题用于椭圆形Schroedinger到Neumann地图

Cherrier-Escobar problem for the elliptic Schroedinger-to-Neumann map

论文作者

Aldawood, Mohammed, Ndiaye, Cheikh Birahim

论文摘要

在本文中,我们研究了与边界紧凑的三维Riemannian歧管上的椭圆形Schroedinger-to-Neumann地图相对应的扩展问题的Cherrier-escobar问题。使用Bahri-Coron的代数拓扑论点,我们在假设与椭圆形Schroedinger到Neumann Map相对应的扩展问题的假设下显示了可溶性,其首先是欧元值,正绿色功能,并且还验证了强大的最大原则。

In this paper, we study a Cherrier-Escobar problem for the extended problem corresponding to the elliptic Schroedinger-to-Neumann map on a compact 3-dimensional Riemannian manifold with boundary. Using the algebraic topological argument of Bahri-Coron, we show solvability under the assumption that the extended problem corresponding to the elliptic Schroedinger-to-Neumann map has a positive first eigenvalue, a positive Green function, and also verifies the strong maximum principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源