论文标题

没有矢量电势的光场的螺旋,手性和自旋

Helicity, chirality and spin of optical fields without vector potentials

论文作者

Aiello, Andrea

论文摘要

Helicity $ h $,手性$ c $和旋转角动量$ \ mathbf {s} $是三个物理观察值,在光场研究中起着重要作用。这些数量密切相关,但是它们的连接是通过使用四个不同的向量字段来代表隐藏的,即电力和磁场$ \ Mathbf {e} $和$ \ Mathbf {b} $,以及两个横向电势向量$ \ MATHBF {C}^\ perp $和$ Mathbf $} Helmholtz的分解定理仅限于螺线管向量场,需要引入真正的反卷曲curl操作员,该操作员只能以可观察到的电场和磁场来表达上述三个量。这产生了$ h,c $和$ \ mathbf {s} $的清晰表达,它们自动衡量不变并显示电动磁性民主。

Helicity $H$, chirality $C$, and spin angular momentum $\mathbf{S}$ are three physical observables that play an important role in the study of optical fields. These quantities are closely related, but their connection is hidden by the use of four different vector fields for their representation, namely, the electric and magnetic fields $\mathbf{E}$ and $\mathbf{B}$, and the two transverse potential vectors $\mathbf{C}^\perp$ and $\mathbf{A}^\perp$. Helmholtz's decomposition theorem restricted to solenoidal vector fields, entails the introduction of a bona fide inverse curl operator, which permits one to express the above three quantities in terms of the observable electric and magnetic fields only. This yields clear expressions for $H, C$, and $\mathbf{S}$, which are automatically gauge-invariant and display electric-magnetic democracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源