论文标题
噪声诊断和基于过滤器的数字错误缓解的光谱分析
Spectral analysis for noise diagnostics and filter-based digital error mitigation
论文作者
论文摘要
我们使用光谱分析和经典信号处理工具研究了噪声对参数化量子电路的影响。对于不同的噪声模型,我们量化了由设备错误引起的输出信号中的额外较高频率模式。我们表明,过滤这些噪声引起的模式可以有效减轻设备错误。当与现有方法结合使用时,这会改善无噪声变化景观的重建。此外,我们描述了这些技术的经典和量子资源需求,并测试了其在量子硬件上动机电路的有效性。
We investigate the effects of noise on parameterised quantum circuits using spectral analysis and classical signal processing tools. For different noise models, we quantify the additional, higher frequency modes in the output signal caused by device errors. We show that filtering these noise-induced modes effectively mitigates device errors. When combined with existing methods, this yields an improved reconstruction of the noiseless variational landscape. Moreover, we describe the classical and quantum resource requirements for these techniques and test their effectiveness for application motivated circuits on quantum hardware.