论文标题
整体变压器:自动驾驶汽车轨迹预测和决策的联合神经网络
Holistic Transformer: A Joint Neural Network for Trajectory Prediction and Decision-Making of Autonomous Vehicles
论文作者
论文摘要
轨迹预测和行为决策是自动驾驶汽车的两项重要任务,他们需要对环境环境有良好的了解;行为决策是通过参考轨迹预测的输出来更好地做出的。但是,大多数当前解决方案分别执行这两个任务。因此,提出了结合多个线索的联合神经网络,并将其命名为整体变压器,以预测轨迹并同时做出行为决策。为了更好地探索线索之间的内在关系,网络使用现有知识并采用三种注意力机制:稀疏的多头类型来减少噪声影响,特征选择稀疏类型,可最佳地使用部分先验知识,以及使用Sigmoid Activation类型的多头,用于最佳地使用Posteteriori知识。与其他轨迹预测模型相比,所提出的模型具有更好的综合性能和良好的解释性。感知噪声稳健性实验表明,所提出的模型具有良好的噪声稳健性。因此,结合多个提示的同时轨迹预测和行为决策可以降低计算成本并增强场景与代理之间的语义关系。
Trajectory prediction and behavioral decision-making are two important tasks for autonomous vehicles that require good understanding of the environmental context; behavioral decisions are better made by referring to the outputs of trajectory predictions. However, most current solutions perform these two tasks separately. Therefore, a joint neural network that combines multiple cues is proposed and named as the holistic transformer to predict trajectories and make behavioral decisions simultaneously. To better explore the intrinsic relationships between cues, the network uses existing knowledge and adopts three kinds of attention mechanisms: the sparse multi-head type for reducing noise impact, feature selection sparse type for optimally using partial prior knowledge, and multi-head with sigmoid activation type for optimally using posteriori knowledge. Compared with other trajectory prediction models, the proposed model has better comprehensive performance and good interpretability. Perceptual noise robustness experiments demonstrate that the proposed model has good noise robustness. Thus, simultaneous trajectory prediction and behavioral decision-making combining multiple cues can reduce computational costs and enhance semantic relationships between scenes and agents.