论文标题

氧化铝陶瓷激光加工的机器学习驱动过程

Machine Learning-Driven Process of Alumina Ceramics Laser Machining

论文作者

Behbahani, Razyeh, Sarvestani, Hamidreza Yazdani, Fatehi, Erfan, Kiyani, Elham, Ashrafi, Behnam, Karttunen, Mikko, Rahmat, Meysam

论文摘要

激光加工是一种高度灵活的非接触制造技术,在学术界和行业中广泛使用。由于光和物质之间的非线性相互作用,模拟方法非常重要,因为它们通过理解激光处理参数之间的相互关系来帮助增强加工质量。另一方面,实验处理参数优化建议对可用处理参数空间进行系统且耗时的研究。一种智能策略是采用机器学习(ML)技术来捕获Picsecond激光加工参数之间的关系,以找到适当的参数组合,以创建对工业级氧化铝陶瓷的所需削减,并具有深层,平滑和无缺陷的模式。激光参数,例如梁振幅和频率,扫描仪的传递速度以及扫描仪与样品表面的垂直距离以及扫描仪的垂直距离,用于预测使用ML模型的雕刻通道的深度,顶部宽度和底部宽度。由于激光参数之间的复杂相关性,因此表明神经网络(NN)是预测输出最有效的。配备了ML模型,该模型可以捕获激光参数与雕刻通道尺寸之间的互连,可以预测所需的输入参数以实现目标通道几何形状。该策略大大降低了在开发阶段实验激光加工的成本和精力,而不会损害准确性或性能。开发的技术可以应用于各种陶瓷激光加工过程。

Laser machining is a highly flexible non-contact manufacturing technique that has been employed widely across academia and industry. Due to nonlinear interactions between light and matter, simulation methods are extremely crucial, as they help enhance the machining quality by offering comprehension of the inter-relationships between the laser processing parameters. On the other hand, experimental processing parameter optimization recommends a systematic, and consequently time-consuming, investigation over the available processing parameter space. An intelligent strategy is to employ machine learning (ML) techniques to capture the relationship between picosecond laser machining parameters for finding proper parameter combinations to create the desired cuts on industrial-grade alumina ceramic with deep, smooth and defect-free patterns. Laser parameters such as beam amplitude and frequency, scanner passing speed and the number of passes over the surface, as well as the vertical distance of the scanner from the sample surface, are used for predicting the depth, top width, and bottom width of the engraved channels using ML models. Owing to the complex correlation between laser parameters, it is shown that Neural Networks (NN) are the most efficient in predicting the outputs. Equipped with an ML model that captures the interconnection between laser parameters and the engraved channel dimensions, one can predict the required input parameters to achieve a target channel geometry. This strategy significantly reduces the cost and effort of experimental laser machining during the development phase, without compromising accuracy or performance. The developed techniques can be applied to a wide range of ceramic laser machining processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源