论文标题

完全芯片的光子交钥匙量子量子源用于纠缠量子/qudit状态生成

Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation

论文作者

Mahmudlu, Hatam, Johanning, Robert, Kashi, Anahita Khodadad, van Rees, Albert, Epping, Jörn P., Haldar, Raktim, Boller, Klaus-J., Kues, Michael

论文摘要

综合光子学最近已成为以紧凑,健壮和可扩展的芯片格式实现和处理光学纠缠量子状态的领先平台,并在长距离量子固定的通信中进行了应用,量子加速信息处理和非经典计量学。但是,到目前为止,迄今为止开发的量子光源依赖于外部笨重的激发激光器,使其不切实际,而不是可重复的原型设备,阻碍可扩展性以及将实验室转移到现实世界中的应用程序。在这里,我们演示了一个完全集成的量子光源,该光源通过激光腔的组合整合来克服这些挑战,这是一种高效的可调噪声抑制滤波器($> 55 $ dB),利用了Vernier效应,并通过自发的四波混合通过自发的光子对生成纠缠的光子对生成。混合量子源采用电气泵的INP增益部分和一个Si $ _3 $ n $ _4 $低静止的微孔滤波器系统,并演示高性能参数,即,在电信频段(带宽$ \ sim 1 $ thz)的四个谐振模式和$ $ $ $ $ $ $ $ \ $ $ \ $ \ s 620 ressonant模式上的发射( $ \ sim 80 $的比率。来源直接创建高维频率键纠缠量子状态(Qubits/Qudits),通过量子干扰测量值验证,可见性高达$ 96 \%$ $(违反钟形质量)以及通过状态层析成像的密度矩阵重建,显示出高达99美元的$ 99 \%$ $ $ $ $。我们的方法利用了混合光子平台,可以实现商业可行的,低成本,紧凑,轻巧和可野外的纠缠量子源,例如用于实用的,典型的,极不贴出的量子,例如在量子处理器和量子卫星通信系统中。

Integrated photonics has recently become a leading platform for the realization and processing of optical entangled quantum states in compact, robust and scalable chip formats with applications in long-distance quantum-secured communication, quantum-accelerated information processing and non-classical metrology. However, the quantum light sources developed so far have relied on external bulky excitation lasers making them impractical, not reproducible prototype devices, hindering scalability and the transfer out of the lab into real-world applications. Here we demonstrate a fully integrated quantum light source, which overcomes these challenges through the combined integration of a laser cavity, a highly efficient tunable noise suppression filter ($> 55$ dB) exploiting the Vernier effect and a nonlinear microring for entangled photon pair generation through spontaneous four-wave mixing. The hybrid quantum source employs an electrically-pumped InP gain section and a Si$_3$N$_4$ low-loss microring filter system, and demonstrates high performance parameters, i.e., a pair emission over four resonant modes in the telecom band (bandwidth $\sim 1$ THz), and a remarkable pair detection rate of $\sim 620$ Hz at a high coincidence-to-accidental ratio of $\sim 80$. The source directly creates high-dimensional frequency-bin entangled quantum states (qubits/qudits), verified by quantum interference measurements with visibilities up to $96\%$ (violating Bell-inequality) and by density matrix reconstruction through state tomography showing fidelities of up to $99\%$. Our approach, leveraging a hybrid photonic platform, enables commercial-viable, low-cost, compact, light-weight, and field-deployable entangled quantum sources, quintessential for practical, out-of-lab applications, e.g., in quantum processors and quantum satellite communications systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源