论文标题

通过随机正交分解和深度学习的数字双数据建模

Digital Twin Data Modelling by Randomized Orthogonal Decomposition and Deep Learning

论文作者

Bistrian, Diana Alina, San, Omer, Navon, Ionel Michael

论文摘要

数字双胞胎是一个代孕模型,具有反映原始过程行为的主要功能。将动态过程与降低复杂性的数字双模型相关联具有很大的优势,可以将动力学以高精度和CPU时间和硬件的成本降低到遭受重大变化的时间表,因此很难探索的时间表。本文介绍了一个新的框架,用于创建有效的数字双流体流量流量。我们介绍了一种新型算法,该算法结合了基于Krylov的动态模式分解的优势和适当的正交分解,并且优于最具影响力模式的选择。我们证明,随机正交分解算法提供了比SVD经验正交分解方法的几个优点,并减轻了对多目标优化问题制定的投影误差。我们涉及最先进的人工智能(DL),以实现实时适应性的TWIDT TWIDIND型模型,以实现实时的适应性校准。该输出是流体流动动力学的高保真数字双数据数据模型,具有降低的复杂性。在复杂性增加的三波现象的数值模拟中,研究了新的建模工具。我们表明,在数值准确性和计算效率方面,包括时间仿真响应功能研究,对新数字数据模型的性能进行了彻底评估。

A digital twin is a surrogate model that has the main feature to mirror the original process behavior. Associating the dynamical process with a digital twin model of reduced complexity has the significant advantage to map the dynamics with high accuracy and reduced costs in CPU time and hardware to timescales over which that suffers significantly changes and so it is difficult to explore. This paper introduces a new framework for creating efficient digital twin models of fluid flows. We introduce a novel algorithm that combines the advantages of Krylov based dynamic mode decomposition with proper orthogonal decomposition and outperforms the selection of the most influential modes. We prove that randomized orthogonal decomposition algorithm provides several advantages over SVD empirical orthogonal decomposition methods and mitigates the projection error formulating a multiobjective optimization problem.We involve the state-of-the-art artificial intelligence Deep Learning (DL) to perform a real-time adaptive calibration of the digital twin model, with increasing fidelity. The output is a high-fidelity DIGITAL TWIN DATA MODEL of the fluid flow dynamics, with the advantage of a reduced complexity. The new modelling tools are investigated in the numerical simulation of three wave phenomena with increasing complexity. We show that the outputs are consistent with the original source data.We perform a thorough assessment of the performance of the new digital twin data models, in terms of numerical accuracy and computational efficiency, including a time simulation response feature study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源