论文标题

学习隐式特征对齐功能用于语义分割

Learning Implicit Feature Alignment Function for Semantic Segmentation

论文作者

Hu, Hanzhe, Chen, Yinbo, Xu, Jiarui, Borse, Shubhankar, Cai, Hong, Porikli, Fatih, Wang, Xiaolong

论文摘要

在语义细分中,将高级上下文信息与低级详细信息集成至关重要。为此,大多数现有的分割模型都采用双线性启动采样和卷积来具有不同尺度的地图,然后以相同的分辨率对齐。但是,双线性启动采样模糊了这些特征地图和卷积中所学的精确信息产生额外的计算成本。为了解决这些问题,我们提出了隐式特征对齐函数(IFA)。我们的方法的灵感来自于隐式神经表示的快速扩展的主题,在该主题中,基于坐标的神经网络被用于指定信号字段。在IFA中,将特征向量视为表示2D信息字段。给定查询坐标,附近具有相对坐标的特征向量取自多级特征图,然后馈入MLP以生成相应的输出。因此,IFA隐含地将特征图在不同级别对齐,并能够在任意分辨率中产生分割图。我们证明了IFA在多个数据集上的功效,包括CityScapes,Pascal环境和ADE20K。我们的方法可以与各种体系结构的改进结合使用,并在共同基准上实现最先进的计算准确性权衡。代码将在https://github.com/hzhupku/ifa上提供。

Integrating high-level context information with low-level details is of central importance in semantic segmentation. Towards this end, most existing segmentation models apply bilinear up-sampling and convolutions to feature maps of different scales, and then align them at the same resolution. However, bilinear up-sampling blurs the precise information learned in these feature maps and convolutions incur extra computation costs. To address these issues, we propose the Implicit Feature Alignment function (IFA). Our method is inspired by the rapidly expanding topic of implicit neural representations, where coordinate-based neural networks are used to designate fields of signals. In IFA, feature vectors are viewed as representing a 2D field of information. Given a query coordinate, nearby feature vectors with their relative coordinates are taken from the multi-level feature maps and then fed into an MLP to generate the corresponding output. As such, IFA implicitly aligns the feature maps at different levels and is capable of producing segmentation maps in arbitrary resolutions. We demonstrate the efficacy of IFA on multiple datasets, including Cityscapes, PASCAL Context, and ADE20K. Our method can be combined with improvement on various architectures, and it achieves state-of-the-art computation-accuracy trade-off on common benchmarks. Code will be made available at https://github.com/hzhupku/IFA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源