论文标题

MSDF:一般的开放域多技能对话框框架

MSDF: A General Open-Domain Multi-Skill Dialog Framework

论文作者

Zhao, Yu, Hu, Xinshuo, Li, Yunxin, Hu, Baotian, Li, Dongfang, Chen, Sichao, Wang, Xiaolong

论文摘要

对话系统已取得了重大进展,并已在各种情况下广泛使用。先前的研究主要集中在单个情况下设计对话模型,而在现实世界中各种情况下处理任务需要全面的能力。在本文中,我们提出了一个通用的多技能对话框框架,即MSDF,可以应用于不同的对话框任务(例如,知识接地对话框和基于角色的对话框)。具体而言,我们提出了一个可转移的响应生成器,以在多种大规模对话框中进行预训练,作为MSDF的骨干,由基于BERT的编码器和基于GPT的解码器组成。为了选择与对话记录一致的响应,我们提出了一个通过负抽样训练的一致性选择器。此外,在各种情况下,还采用了灵活的外部知识复制机制来增强多形知识的利用。我们对知识接地对话,建议对话框和基于角色的对话任务进行实验。实验结果表明,我们的MSDF的表现优于基线模型。在2021语言和情报挑战的多技能对话中,我们的一般MSDF获得了第三奖,这证明我们的MSDF具有有效且具有竞争力。

Dialog systems have achieved significant progress and have been widely used in various scenarios. The previous researches mainly focused on designing dialog generation models in a single scenario, while comprehensive abilities are required to handle tasks under various scenarios in the real world. In this paper, we propose a general Multi-Skill Dialog Framework, namely MSDF, which can be applied in different dialog tasks (e.g. knowledge grounded dialog and persona based dialog). Specifically, we propose a transferable response generator pre-trained on diverse large-scale dialog corpora as the backbone of MSDF, consisting of BERT-based encoders and a GPT-based decoder. To select the response consistent with dialog history, we propose a consistency selector trained through negative sampling. Moreover, the flexible copy mechanism of external knowledge is also employed to enhance the utilization of multiform knowledge in various scenarios. We conduct experiments on knowledge grounded dialog, recommendation dialog, and persona based dialog tasks. The experimental results indicate that our MSDF outperforms the baseline models with a large margin. In the Multi-skill Dialog of 2021 Language and Intelligence Challenge, our general MSDF won the 3rd prize, which proves our MSDF is effective and competitive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源