论文标题

通过社区环境丰富滥用语言检测

Enriching Abusive Language Detection with Community Context

论文作者

Kurrek, Jana, Saleem, Haji Mohammad, Ruths, Derek

论文摘要

贬值表达的使用可以是良性或积极增强的。当滥用检测模型将这些表达式错误分类为贬义时,它们无意中审查了边缘化群体进行的生产性对话。参与非主导观点的一种方法是添加围绕对话的上下文。先前的研究利用了用户和线程级别的功能,但它常常忽略了发生生产性对话的空间。我们的论文强调了社区环境如何改善滥用语言检测的分类结果。我们为此做出了两个主要贡献。首先,我们证明在线社区以他们对虐待受害者的支持的性质聚集。其次,我们确定社区环境如何提高准确性并降低最先进的滥用语言分类器的假阳性率。这些发现暗示了滥用语言研究中情境感知模型的有希望的方向。

Uses of pejorative expressions can be benign or actively empowering. When models for abuse detection misclassify these expressions as derogatory, they inadvertently censor productive conversations held by marginalized groups. One way to engage with non-dominant perspectives is to add context around conversations. Previous research has leveraged user- and thread-level features, but it often neglects the spaces within which productive conversations take place. Our paper highlights how community context can improve classification outcomes in abusive language detection. We make two main contributions to this end. First, we demonstrate that online communities cluster by the nature of their support towards victims of abuse. Second, we establish how community context improves accuracy and reduces the false positive rates of state-of-the-art abusive language classifiers. These findings suggest a promising direction for context-aware models in abusive language research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源