论文标题
用户可自定义且可靠的地理位置可区分位置隐私性
User Customizable and Robust Geo-Indistinguishability for Location Privacy
论文作者
论文摘要
现有系统为确保位置隐私而产生的位置混淆功能是单片的,并且不允许用户自定义其混淆范围。这可能会导致用户被映射到不良位置(例如,阴暗的社区)到位置要求服务的位置。修改由用户端的集中式服务器生成的混淆函数可能会导致较差的隐私,因为原始功能在此类更新方面并不强大。用户本身可能会发现要了解混淆机制所涉及的参数(例如,混淆范围和位置表示的粒度),因此很难在隐私,公用事业和自定义之间设定现实的权衡。在本文中,我们提出了一个新的框架,称为Corgi,即可自定义的可靠地理可区分性,该框架生成位置混淆功能,可抵抗用户自定义,同时根据地理位置可区分性范式提供强大的隐私保证。 Corgi利用给定区域的树表示,以帮助用户指定其隐私和自定义要求。 Corgi的服务器端将这些要求作为输入,并生成一个满足地理可区分性要求的混淆功能,并且可抵抗用户端的自定义。混淆函数将返回给用户,然后可以选择更新混淆功能(例如,混淆范围,位置表示的粒度)。真实数据集的实验结果表明,Corgi可以有效地生成混淆矩阵,这些矩阵对用户的自定义更加可靠。
Location obfuscation functions generated by existing systems for ensuring location privacy are monolithic and do not allow users to customize their obfuscation range. This can lead to the user being mapped in undesirable locations (e.g., shady neighborhoods) to the location-requesting services. Modifying the obfuscation function generated by a centralized server on the user side can result in poor privacy as the original function is not robust against such updates. Users themselves might find it challenging to understand the parameters involved in obfuscation mechanisms (e.g., obfuscation range and granularity of location representation) and therefore struggle to set realistic trade-offs between privacy, utility, and customization. In this paper, we propose a new framework called, CORGI, i.e., CustOmizable Robust Geo-Indistinguishability, which generates location obfuscation functions that are robust against user customization while providing strong privacy guarantees based on the Geo-Indistinguishability paradigm. CORGI utilizes a tree representation of a given region to assist users in specifying their privacy and customization requirements. The server side of CORGI takes these requirements as inputs and generates an obfuscation function that satisfies Geo-Indistinguishability requirements and is robust against customization on the user side. The obfuscation function is returned to the user who can then choose to update the obfuscation function (e.g., obfuscation range, granularity of location representation). The experimental results on a real dataset demonstrate that CORGI can efficiently generate obfuscation matrices that are more robust to the customization by users.