论文标题
提升可集成的模型和远程互动
Lifting integrable models and long-range interactions
论文作者
论文摘要
在本文中,我们讨论了一种建设性的方法,以检查恒定的哈密顿量是否是Yang-Baxter。然后,我们将方法应用于远程交互作用,并在n = 4 sym中找到两环SU(2)扇区的LAX运算符和$ r $ -Matrix。我们表明,这种类型的6-Vertex模型的所有已知的集成长距离变形均可从Lax运算符和$ R $ -MATRIX获得。最后,我们讨论了较高循环时发生的情况,并突出了这些模型似乎展示的一些一般结构。
In this paper we discuss a constructive approach to check whether a constant Hamiltonian is Yang-Baxter integrable. We then apply our method to long-range interactions and find the Lax operator and $R$-matrix of the two-loop SU(2) sector in N=4 SYM. We show that all known integrable long-range deformations of the 6-vertex models of this type can be obtained from a Lax operator and an $R$-matrix. Finally we discuss what happens at higher loops and highlight some general structures that these models seem to exhibit.