论文标题
部分可观测时空混沌系统的无模型预测
Realistic One-shot Mesh-based Head Avatars
论文作者
论文摘要
我们介绍了一个现实的单发网眼的人体头像创作的系统,简称罗马。使用一张照片,我们的模型估计了特定于人的头部网格和相关的神经纹理,该神经纹理编码局部光度和几何细节。由此产生的化身被操纵,可以使用神经网络进行渲染,该神经网络与野外视频数据集上的网格和纹理估计器一起训练。在实验中,我们观察到我们的系统在头部几何恢复和渲染质量方面都具有竞争性的性能,尤其是对于交叉的重新制定。请参阅结果https://samsunglabs.github.io/rome/
We present a system for realistic one-shot mesh-based human head avatars creation, ROME for short. Using a single photograph, our model estimates a person-specific head mesh and the associated neural texture, which encodes both local photometric and geometric details. The resulting avatars are rigged and can be rendered using a neural network, which is trained alongside the mesh and texture estimators on a dataset of in-the-wild videos. In the experiments, we observe that our system performs competitively both in terms of head geometry recovery and the quality of renders, especially for the cross-person reenactment. See results https://samsunglabs.github.io/rome/