论文标题

部分可观测时空混沌系统的无模型预测

An Optimal Product-State Approximation for 2-Local Quantum Hamiltonians with Positive Terms

论文作者

Parekh, Ojas, Thompson, Kevin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We resolve the approximability of the maximum energy of the Quantum Max Cut (QMC) problem using product states. A classical 0.498-approximation, using a basic semidefinite programming relaxation, is known for QMC, paralleling the celebrated 0.878-approximation for classical Max Cut. For Max Cut, improving the 0.878-approximation is Unique-Games-hard (UG-hard), and one might expect that improving the 0.498-approximation is UG-hard for QMC. In contrast, we give a classical 1/2-approximation for QMC that is unconditionally optimal, since simple examples exhibit a gap of 1/2 between the energies of an optimal product state and general quantum state. Our result relies on a new nonlinear monogamy of entanglement inequality on a triangle that is derived from the second level of the quantum Lasserre hierarchy. This inequality also applies to the quantum Heisenberg model, and our results generalize to instances of Max 2-Local Hamiltonian where each term is positive and has no 1-local parts. Finally, we give further evidence that product states are essential for approximations of 2-Local Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源