论文标题

IBOOT:图像引导的自我监督视频表示学习

iBoot: Image-bootstrapped Self-Supervised Video Representation Learning

论文作者

Saleh, Fatemeh, Tan, Fuwen, Bulat, Adrian, Tzimiropoulos, Georgios, Martinez, Brais

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Learning visual representations through self-supervision is an extremely challenging task as the network needs to sieve relevant patterns from spurious distractors without the active guidance provided by supervision. This is achieved through heavy data augmentation, large-scale datasets and prohibitive amounts of compute. Video self-supervised learning (SSL) suffers from added challenges: video datasets are typically not as large as image datasets, compute is an order of magnitude larger, and the amount of spurious patterns the optimizer has to sieve through is multiplied several fold. Thus, directly learning self-supervised representations from video data might result in sub-optimal performance. To address this, we propose to utilize a strong image-based model, pre-trained with self- or language supervision, in a video representation learning framework, enabling the model to learn strong spatial and temporal information without relying on the video labeled data. To this end, we modify the typical video-based SSL design and objective to encourage the video encoder to \textit{subsume} the semantic content of an image-based model trained on a general domain. The proposed algorithm is shown to learn much more efficiently (i.e. in less epochs and with a smaller batch) and results in a new state-of-the-art performance on standard downstream tasks among single-modality SSL methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源