论文标题
部分可观测时空混沌系统的无模型预测
Boosting the Adversarial Transferability of Surrogate Models with Dark Knowledge
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Deep neural networks (DNNs) are vulnerable to adversarial examples. And, the adversarial examples have transferability, which means that an adversarial example for a DNN model can fool another model with a non-trivial probability. This gave birth to the transfer-based attack where the adversarial examples generated by a surrogate model are used to conduct black-box attacks. There are some work on generating the adversarial examples from a given surrogate model with better transferability. However, training a special surrogate model to generate adversarial examples with better transferability is relatively under-explored. This paper proposes a method for training a surrogate model with dark knowledge to boost the transferability of the adversarial examples generated by the surrogate model. This trained surrogate model is named dark surrogate model (DSM). The proposed method for training a DSM consists of two key components: a teacher model extracting dark knowledge, and the mixing augmentation skill enhancing dark knowledge of training data. We conducted extensive experiments to show that the proposed method can substantially improve the adversarial transferability of surrogate models across different architectures of surrogate models and optimizers for generating adversarial examples, and it can be applied to other scenarios of transfer-based attack that contain dark knowledge, like face verification. Our code is publicly available at \url{https://github.com/ydc123/Dark_Surrogate_Model}.