论文标题
部分可观测时空混沌系统的无模型预测
The prescribed point area estimate for minimal submanifolds in constant curvature
论文作者
论文摘要
我们证明,在双曲线空间中,在任何维度和编辑中都通过大地球球中的规定点,估计了最小的亚策略。在某些情况下,我们还证明了球体中的相应估计值。我们的估计与布伦德尔的估计相似,并悬挂在欧几里得的环境中。
We prove a sharp area estimate for minimal submanifolds that pass through a prescribed point in a geodesic ball in hyperbolic space, in any dimension and codimension. In certain cases, we also prove the corresponding estimate in the sphere. Our estimates are analogous to those of Brendle and Hung in the Euclidean setting.