论文标题

无线传感器网络中基于深度学习的无设置本地化

Deep Learning-Based Device-Free Localization in Wireless Sensor Networks

论文作者

Abdullah, Osamah A., Al-Hraishawi, Hayder, Chatzinotas, Symeon

论文摘要

基于位置的服务(LB)目睹了他们提供强大而个性化的数字体验的关键特征,因此他们的受欢迎程度有所提高。无线传感技术的最新发展使无线传感器网络中可行的无设置(DFL)的实现。 DFL是一种新兴技术,它利用无线电信号信息来检测和定位被动目标,而目标不配备无线设备。但是,确定大量原始信号的特征并提取与本地化相关的有意义的判别特征是高度复杂的任务。因此,由于在许多实际问题中的表现增长,深度学习(DL)技术可用于解决DFL问题。在这个方向上,我们提出了一个DFL框架由多个卷积神经网络(CNN)以及基于受限的玻尔兹曼机器(RBM)的自动编码器组成,以构建卷积深度信念网络(CDBN)以识别和提取。每一层都有随机池,以对特征图进行采样,并缩小所需数据的尺寸以进行精确定位。提出的框架使用实际实验数据集进行了验证。结果表明,我们的算法可以实现98%的高精度,而数据尺寸降低和信噪比较低(SNR)。

Location-based services (LBS) are witnessing a rise in popularity owing to their key features of delivering powerful and personalized digital experiences. The recent developments in wireless sensing techniques make the realization of device-free localization (DFL) feasible in wireless sensor networks. The DFL is an emerging technology that utilizes radio signal information for detecting and positioning a passive target while the target is not equipped with a wireless device. However, determining the characteristics of the massive raw signals and extracting meaningful discriminative features relevant to the localization are highly intricate tasks. Thus, deep learning (DL) techniques can be utilized to address the DFL problem due to their unprecedented performance gains in many practical problems. In this direction, we propose a DFL framework consists of multiple convolutional neural network (CNN) layers along with autoencoders based on the restricted Boltzmann machines (RBM) to construct a convolutional deep belief network (CDBN) for features recognition and extracting. Each layer has stochastic pooling to sample down the feature map and reduced the dimensions of the required data for precise localization. The proposed framework is validated using real experimental dataset. The results show that our algorithm can achieve a high accuracy of 98% with reduced data dimensions and low signal-to-noise ratios (SNRs).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源