论文标题
使用向后模拟的多个对象轨迹估算
Multiple Object Trajectory Estimation Using Backward Simulation
论文作者
论文摘要
本文提出了一种通用解决方案,用于从一系列多对象(未标记)过滤密度和多对象动态模型中计算多对象后验。重要的是,提出的解决方案为未明确估计轨迹的多对象过滤器开辟了轨迹估计的可能性。在本文中,我们首先基于随机有限的轨迹集来得出一般的多条件值向后平滑方程。然后,我们展示了如何使用向后模拟进行泊松多晶状体过滤密度来采样轨迹集,并根据排名分配开发可拖动的实现。在一项模拟研究中评估了所得的多孔径粒子smohorth的性能,结果表明,与几个最先进的多对象过滤器和SmoOthort相比,它们具有较高的性能。
This paper presents a general solution for computing the multi-object posterior for sets of trajectories from a sequence of multi-object (unlabelled) filtering densities and a multi-object dynamic model. Importantly, the proposed solution opens an avenue of trajectory estimation possibilities for multi-object filters that do not explicitly estimate trajectories. In this paper, we first derive a general multi-trajectory backward smoothing equation based on random finite sets of trajectories. Then we show how to sample sets of trajectories using backward simulation for Poisson multi-Bernoulli filtering densities, and develop a tractable implementation based on ranked assignment. The performance of the resulting multi-trajectory particle smoothers is evaluated in a simulation study, and the results demonstrate that they have superior performance in comparison to several state-of-the-art multi-object filters and smoothers.