论文标题

Carlane:从模拟到多个现实域的无监督域适应的车道检测基准

CARLANE: A Lane Detection Benchmark for Unsupervised Domain Adaptation from Simulation to multiple Real-World Domains

论文作者

Gebele, Julian, Stuhr, Bonifaz, Haselberger, Johann

论文摘要

无监督的域适应性通过将模型从标记的源域转移到未标记的目标域来显示出巨大的减轻域移动的潜力。虽然无监督的域适应已应用于各种复杂的视力任务,但只有很少的作品专注于自动驾驶的车道检测。这可以归因于缺乏公开可用的数据集。为了促进这些方向的研究,我们提出了Carlane,这是用于2D车道检测的3条SIM到真实域的适应基准。 Carlane包括单目标数据集Molane和Tulane以及多目标数据集Mulane。这些数据集由三个不同的域构建,这些域涵盖了不同的场景,并包含163K独特的图像,其中118K被注释。此外,我们评估和报告系统的基线,包括我们自己的方法,这些方法基于典型的跨域自学学习。我们发现,与完全监督的基线相比,评估域适应方法的假阳性和假阴性率很高。这肯定了诸如嘉兰等基准的必要性,以进一步加强无监督的域适应性泳道检测的研究。 Carlane,所有评估的模型和相应的实现都可以在https://carlanebench.github.io上公开获得。

Unsupervised Domain Adaptation demonstrates great potential to mitigate domain shifts by transferring models from labeled source domains to unlabeled target domains. While Unsupervised Domain Adaptation has been applied to a wide variety of complex vision tasks, only few works focus on lane detection for autonomous driving. This can be attributed to the lack of publicly available datasets. To facilitate research in these directions, we propose CARLANE, a 3-way sim-to-real domain adaptation benchmark for 2D lane detection. CARLANE encompasses the single-target datasets MoLane and TuLane and the multi-target dataset MuLane. These datasets are built from three different domains, which cover diverse scenes and contain a total of 163K unique images, 118K of which are annotated. In addition we evaluate and report systematic baselines, including our own method, which builds upon Prototypical Cross-domain Self-supervised Learning. We find that false positive and false negative rates of the evaluated domain adaptation methods are high compared to those of fully supervised baselines. This affirms the need for benchmarks such as CARLANE to further strengthen research in Unsupervised Domain Adaptation for lane detection. CARLANE, all evaluated models and the corresponding implementations are publicly available at https://carlanebenchmark.github.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源