论文标题

广义杠杆分数:几何解释和应用

Generalized Leverage Scores: Geometric Interpretation and Applications

论文作者

Ordozgoiti, Bruno, Matakos, Antonis, Gionis, Aristides

论文摘要

在涉及矩阵计算的问题中,杠杆的概念发现了大量应用。特别是,将矩阵的列与其领先的单数矢量跨越的子空间相关联的杠杆分数有助于揭示列亚集,以大约将矩阵分配给具有质量保证的矩阵。因此,它们为各种机器学习方法提供了坚实的基础。在本文中,我们扩展了杠杆分数的定义,以将矩阵的列与奇异向量的任意子集相关联。我们通过将杠杆分数和子空间之间的主要角度的概念与列之间和单数矢量子集之间的精确联系建立。我们将此结果用于设计近似算法,并有可证明的保证,以确保两个众所周知的问题:广义列子集选择和稀疏的规范相关分析。我们运行数值实验,以进一步了解所提出的方法。我们得出的新颖界限提高了我们对矩阵近似中基本概念的理解。此外,我们的见解可能是进一步贡献的基础。

In problems involving matrix computations, the concept of leverage has found a large number of applications. In particular, leverage scores, which relate the columns of a matrix to the subspaces spanned by its leading singular vectors, are helpful in revealing column subsets to approximately factorize a matrix with quality guarantees. As such, they provide a solid foundation for a variety of machine-learning methods. In this paper we extend the definition of leverage scores to relate the columns of a matrix to arbitrary subsets of singular vectors. We establish a precise connection between column and singular-vector subsets, by relating the concepts of leverage scores and principal angles between subspaces. We employ this result to design approximation algorithms with provable guarantees for two well-known problems: generalized column subset selection and sparse canonical correlation analysis. We run numerical experiments to provide further insight on the proposed methods. The novel bounds we derive improve our understanding of fundamental concepts in matrix approximations. In addition, our insights may serve as building blocks for further contributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源