论文标题

基于概括的$α$ - $ z $ - 归因的rényi熵,通过革兰氏矩阵的连贯性的纯种合奏的量子性

Quantumness of pure-state ensembles via coherence of Gram matrix based on generalized $α$-$z$-relative Rényi entropy

论文作者

Yuan, Wendao, Wu, Zhaoqi, Fei, Shao-Ming

论文摘要

一组量子纯状态的革兰氏矩阵在量子信息理论中起关键作用。有人强调说,纯态合奏的革兰氏矩阵可以看作是量子状态,因此可以通过革兰氏矩阵[europhys的一致性来量化纯态合奏的量子。 Lett。 \ textbf {134} 30003]。我们利用了革兰氏矩阵相干性的广义$α$ - $ z $rényi熵,而不是$ l_1 $ - 连贯性和相干性的相对熵,以量化纯状态整体的量子性并探索其属性。我们通过计算六个重要的纯净合奏的量子性来显示该量词的有用性。此外,我们将量子与其他现有的量子进行比较,并显示其功能和订单。

The Gram matrix of a set of quantum pure states plays key roles in quantum information theory. It has been highlighted that the Gram matrix of a pure-state ensemble can be viewed as a quantum state, and the quantumness of a pure-state ensemble can thus be quantified by the coherence of the Gram matrix [Europhys. Lett. \textbf{134} 30003]. Instead of the $l_1$-norm of coherence and the relative entropy of coherence, we utilize the generalized $α$-$z$-relative Rényi entropy of coherence of the Gram matrix to quantify the quantumness of a pure-state ensemble and explore its properties. We show the usefulness of this quantifier by calculating the quantumness of six important pure-state ensembles. Furthermore, we compare our quantumness with other existing ones and show their features as well as orderings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源