论文标题
基于特征细化和反射解码的图像字幕
Image Captioning based on Feature Refinement and Reflective Decoding
论文作者
论文摘要
图像字幕是在自然语言中自动生成图像描述的过程。图像字幕是图像理解中的重要挑战之一,因为它不仅需要识别图像中的显着对象,还需要其属性及其相互作用的方式。然后,系统必须生成句法和语义上正确的标题,该字幕描述了自然语言的图像内容。鉴于深度学习模型的重大进展及其有效编码大量图像并生成正确句子的能力,最近已经提出了几种基于神经的字幕方法,每种方法都试图达到更好的准确性和标题质量。本文介绍了一个基于编码器的图像字幕系统,其中编码器使用Resnet-101从图像中提取空间特征。此阶段之后是一个精炼模型,该模型使用注意力启动机制来提取目标图像对象的视觉特征,然后确定其相互作用。解码器由一个基于注意力的复发模块和反思性注意模块组成,该模块会协作地将注意力应用于视觉和文本特征,以增强解码器对长期顺序依赖性建模的能力。在FlickR30K上进行的广泛实验,显示了所提出的方法的有效性以及生成的字幕的高质量。
Image captioning is the process of automatically generating a description of an image in natural language. Image captioning is one of the significant challenges in image understanding since it requires not only recognizing salient objects in the image but also their attributes and the way they interact. The system must then generate a syntactically and semantically correct caption that describes the image content in natural language. With the significant progress in deep learning models and their ability to effectively encode large sets of images and generate correct sentences, several neural-based captioning approaches have been proposed recently, each trying to achieve better accuracy and caption quality. This paper introduces an encoder-decoder-based image captioning system in which the encoder extracts spatial features from the image using ResNet-101. This stage is followed by a refining model, which uses an attention-on-attention mechanism to extract the visual features of the target image objects, then determine their interactions. The decoder consists of an attention-based recurrent module and a reflective attention module, which collaboratively apply attention to the visual and textual features to enhance the decoder's ability to model long-term sequential dependencies. Extensive experiments performed on Flickr30K, show the effectiveness of the proposed approach and the high quality of the generated captions.