论文标题
螺旋和折叠:拓扑视图
Spiraling and Folding: The Topological View
论文作者
论文摘要
对于每$ n $,我们在飞机上构造两条曲线,这些曲线与至少$ n $ times且不形成螺旋形。该结构分为三个阶段:我们首先在不形成双螺旋的圆环上表现出封闭的曲线,然后在不形成螺旋的圆环上弧,最后成对成对的一对不形成螺旋的平面弧。这些曲线提供了有关弦图图的Pach和Tóth证明的反例。
For every $n$, we construct two curves in the plane that intersect at least $n$ times and do not form spirals. The construction is in three stages: we first exhibit closed curves on the torus that do not form double spirals, then arcs on the torus that do not form spirals, and finally pairs of planar arcs that do not form spirals. These curves provide a counterexample to a proof of Pach and Tóth concerning string graphs.